The global chassis sector report

An analysis of the braking, steering & suspension markets

2006 edition

by Alex Graham
The global chassis sector report

An analysis of the braking, steering & suspension markets

2006 edition
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii</td>
<td>List of tables</td>
</tr>
<tr>
<td>ii</td>
<td>List of figures</td>
</tr>
<tr>
<td>iv</td>
<td>The author</td>
</tr>
<tr>
<td>1</td>
<td>Chapter 1: Introduction</td>
</tr>
<tr>
<td>1</td>
<td>Modules & systems: a definition</td>
</tr>
<tr>
<td>1</td>
<td>The passenger vehicle chassis</td>
</tr>
<tr>
<td>3</td>
<td>Chapter 2: Executive summary</td>
</tr>
<tr>
<td>3</td>
<td>Braking</td>
</tr>
<tr>
<td>4</td>
<td>Steering</td>
</tr>
<tr>
<td>5</td>
<td>Suspension</td>
</tr>
<tr>
<td>5</td>
<td>Springs and dampers</td>
</tr>
<tr>
<td>6</td>
<td>Roadmap</td>
</tr>
<tr>
<td>8</td>
<td>Chapter 3: Braking components, modules and systems</td>
</tr>
<tr>
<td>8</td>
<td>Brake foundation components and modules</td>
</tr>
<tr>
<td>9</td>
<td>Brake control systems</td>
</tr>
<tr>
<td>9</td>
<td>Antilock brake systems (ABS)</td>
</tr>
<tr>
<td>10</td>
<td>Electronic stability control (ESC)</td>
</tr>
<tr>
<td>13</td>
<td>Electro-hydraulic braking (EHB)</td>
</tr>
<tr>
<td>14</td>
<td>Electro-mechanical braking (EMB)</td>
</tr>
<tr>
<td>16</td>
<td>Outlook & forecast – light passenger vehicle braking</td>
</tr>
<tr>
<td>16</td>
<td>Enhancing existing technology</td>
</tr>
<tr>
<td>18</td>
<td>Innovation introduction</td>
</tr>
<tr>
<td>19</td>
<td>Fuel-electric hybrid vehicles</td>
</tr>
<tr>
<td>19</td>
<td>Electronics & integration</td>
</tr>
<tr>
<td>20</td>
<td>Chapter 4: Suspension & damping</td>
</tr>
<tr>
<td>21</td>
<td>Suspension modules</td>
</tr>
<tr>
<td>23</td>
<td>Springs and dampers</td>
</tr>
<tr>
<td>26</td>
<td>Alternative solutions:</td>
</tr>
<tr>
<td>26</td>
<td>Adaptive Damping Systems (ADS)</td>
</tr>
<tr>
<td>26</td>
<td>Magneto-rheological fluids</td>
</tr>
<tr>
<td>27</td>
<td>Hydro-mechanical damping</td>
</tr>
<tr>
<td>29</td>
<td>Outlook & forecast</td>
</tr>
<tr>
<td>29</td>
<td>Suspension modules</td>
</tr>
<tr>
<td>30</td>
<td>Springs and dampers</td>
</tr>
<tr>
<td>31</td>
<td>Chapter 5: Steering</td>
</tr>
<tr>
<td>32</td>
<td>Electric power assisted steering (EPS)</td>
</tr>
<tr>
<td>33</td>
<td>Electro-hydraulic power steering (EHPS)</td>
</tr>
<tr>
<td>33</td>
<td>Hydraulic power steering (HPS)</td>
</tr>
<tr>
<td>33</td>
<td>Steer-by-wire/fully electronic steering</td>
</tr>
<tr>
<td>34</td>
<td>Outlook & forecast</td>
</tr>
</tbody>
</table>
Chapter 6: Chassis sector supplier profiles

Bosch:
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

Continental Automotive Systems (CAS)
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

Delphi
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

Tenneco
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

ThyssenKrupp
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

TRW
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

ZF Friedrichshafen
- Major chassis products
- Market share/position for major products
- Strategy for the chassis sector
- Key programs
- New product development/chassis innovation management

Others
- ArvinMeritor
- Kayaba
- Benteler
- Dana

Chapter 7: OEM system technology trends
- Who takes what and why?
- BMW
- Ford (including Premier Automotive Group brands)
- General Motors
- Mercedes-Benz (DaimlerChrysler)
- Porsche
- Toyota
- Volkswagen Group
Chapter 8: OEM modular sourcing trends

56 Cost-benefit relationships
57 BMW
57 DaimlerChrysler
58 Fiat Auto
58 Ford (including Premier Automotive Group brands)
59 General Motors
59 Honda
59 Hyundai
60 Porsche
60 PSA Peugeot-Citroën
60 Renault-Nissan
61 Toyota
61 Volkswagen Group

Chapter 9: Technology roadmap

62 Electronics
63 System integration and interaction
63 The intelligent chassis

List of tables:

Table 1 Selected models featuring air spring suspension as standard
Table 2 Selected models featuring air spring suspension as an option
Table 3 Volume penetration of adaptive damping systems by OEMs
Table 4 Selected Bosch ABS/ESP contracts
Table 5 Selected CAS chassis contracts
Table 6 Selected Delphi chassis contracts
Table 7 Selected Tenneco chassis contracts
Table 8 Selected ThyssenKrupp chassis contracts
Table 9 Selected TRW chassis contracts
Table 10 Selected ZF Friedrichshafen chassis contracts
Table 11 Selected suppliers of corner modules to General Motors in North America and Europe

List of figures

Figure 1 Delphi's Maximum Torque Brake (MTB)
Figure 2 The growth of antilock brake systems (ABS)
Figure 3 Antilock brake systems vs Electronic stability control (ESC)
Figure 4 Effectiveness of ESC in reducing fatal single vehicle crashes in passenger cars and SUVs
Figure 5 ESC/ABS fitment rate (%), Western Europe, 1994 – 2014
Figure 6 ESC/ABS fitment rate (%), North America, 2000 – 2009
Figure 7 ESC/ABS market share, Western Europe, 2004
Figure 8 ESC/ABS market share, North America, 2004
Figure 9 ESC/ABS market share, Global, 2004
Figure 10 Air suspension systems market share, Global, 2004
Figure 11 Western Europe: market share for adaptive dampers, 2004 & 2008
Figure 12 Western Europe: market share for passive dampers, 2004
Figure 13 Fitment rate of electric power steering (EPS); Europe, North America, Japan and Global; 2004 – 2010
Figure 14 Fitment rate of hydraulic power steering (HPS); Europe, North America, Japan and Global; 2004 – 2010
Introduction

The purpose of this report is to examine developments and trends in product groupings associated with the automotive chassis sector. In particular, this report will define and examine the key components, systems and modules that make up the chassis of a modern car, with specific regard to market usage, technological trends and forecast developments. This will include mainstream, mass-market technology, as well as innovative and advanced technology where appropriate in each product area.

In addition, the report will review market shares of the leading supplier competitors in each major product area, and the approach of each supplier to the market, including its role within the emergence of innovative technologies. Likewise, there will be an analysis of the technology and sourcing trends apparent among the major global carmakers.

For the purposes of this report, the major product groups in the chassis are the braking and steering systems, as well as the suspension componentry by which the body is married to the chassis, and the spring and damping systems\(^1\) that control pitch and roll when the vehicle is in motion.

Broader definitions can also include the drivetrain, fuel supply and exhaust gas systems in the chassis.

Modules & systems: a definition

In this report, a module is considered an assembly of components, which are physically co-located on a car, such as a brake corner module, or an axle module. These modules may contain several components from different systems.

A system is made up of a group of components that are functionally related, but may be found in different parts of the vehicle. A brake system is one example.

The passenger vehicle chassis

The chassis of a modern car, like the chassis of an historic car, primarily serves as the interface between the car body, occupants and the road. The components and systems in a chassis perform the functions of steering, stabilising and decelerating the vehicle, and are all geared to providing the optimum road contact at each wheel/tyre corner of the vehicle.

Over time, chassis systems have evolved to offer greater stability, comfort and driver assistance, all of which improves road safety. Both antilock braking and electronic stability control can brake a vehicle and maintain its lateral stability far more effectively than the vast majority of drivers can do manually. Power assisted steering has greatly reduced driver effort in steering input, and the first active steering systems went to market in 2003.

\(^1\) Reference to dampers or damping systems in this report means shock absorbers.
“The traditional solution to coping with increasing vehicle weight and performance is to up-rate conventional braking systems, including larger discs (often forcing larger wheels) and advanced materials, but this is a costly solution that has a negative impact in many other areas of vehicle engineering,” says Chris Baylis, director of engineering at Delphi’s Leamington, UK, innovation centre, which led the development of MTB.

Figure 1: Delphi’s Maximum Torque Brake (MTB)

As the available torque is much higher at each corner, it also permits a smaller brake booster – up to one kilogram lighter in a large SUV for example – and the twin-disc structure allows much better heat dissipation. Delphi claims that in a high performance SUV, its new brake disc concept could offer the following benefits:

- 7kg lighter overall;
- Reduce operating temperature by 100°C;
- Shorter stopping distances in the event of a booster failure; and
- Reduced noise, vibration and harshness (NVH) over time.

Delphi first displayed a hydraulic MTB concept in August 2003. As of October 2005, MTB had not entered production, but sources at Delphi say that they have entered series development with potential OEM customers in Europe. It is not thought that Delphi’s entry into Chapter 11 bankruptcy protection from October 8th 2005, will have a significant negative impact.

Brake control systems

Antilock brake systems (ABS)

The first concepts for an antilock braking system began to appear in the 1930s, and through the 1950s and 1960s various mechanical systems appeared on some race cars and low-volume niche cars.

But the mechanical systems were bulky and unreliable, and the first modern hydraulic ABS system was brought to market by Bosch in the Mercedes-Benz S-Class and BMW 7 Series in 1978.
Figure 6: ESC/ABS fitment rate (%), North America, 2000 – 2009

The global chassis sector report

But with competition from every established system supplier – especially in light of the news in late 2004 that Teves had secured a major part of the Ford contract in North America – margins will be tight.

Figure 7: ESC/ABS market share, Western Europe, 2004

<table>
<thead>
<tr>
<th>Company</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosch</td>
<td>49%</td>
</tr>
<tr>
<td>Continental Teves</td>
<td>44%</td>
</tr>
<tr>
<td>TRW</td>
<td>7%</td>
</tr>
</tbody>
</table>

Source: ABOUT Automotive/Autelligence
Figure 10: Air suspension systems market share, Global, 2004

<table>
<thead>
<tr>
<th>Company</th>
<th>Volume</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibracoustic</td>
<td>296,800</td>
<td>52%</td>
</tr>
<tr>
<td>Continental Automotive</td>
<td>186,700</td>
<td>32%</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>93,000</td>
<td>16%</td>
</tr>
</tbody>
</table>

Source: ABOUT Automotive/Autelligence

It is simpler for an OEM to equip every vehicle on the line with air suspension

Because of the expense of the system, applications are mainly limited to a small number of luxury SUVs and sedans including the Ranger Rover, Lincoln Navigator and Rolls-Royce Phantom. Interestingly, on many of the vehicles concerned, air suspension is offered as standard fit. This suggests that the technology is very effective and highly appreciated by the consumer, and possibly that due to its complexity and cost, it is simpler for an OEM to equip every vehicle on the line with air suspension, instead of trying to manage another build permutation.

Table 1: Selected models featuring air spring suspension as standard

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audi</td>
<td>A6 Allroad</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td></td>
<td>A8</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td>Bentley</td>
<td>Continental GT</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td>DaimlerChrysler</td>
<td>Maybach</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>Phaeton</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td>Land Rover</td>
<td>Range Rover (front)</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td></td>
<td>Discovery 3/LR3*</td>
<td>Delphi</td>
</tr>
<tr>
<td></td>
<td>Range Rover Sport</td>
<td>Delphi</td>
</tr>
<tr>
<td></td>
<td>Range Rover (rear)</td>
<td>Vibracoustic</td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>S-Class</td>
<td>Vibracoustic</td>
</tr>
<tr>
<td>Rolls-Royce</td>
<td>Phantom</td>
<td>Vibracoustic</td>
</tr>
</tbody>
</table>

*officially, air suspension is standard on some variants of the Discovery 3. In practice, over 95% of vehicles are fitted with air spring, making it effectively standard.

Source: ABOUT Automotive/Autelligence
Chapter 5

Steering

As with braking technology, the rate of change of technology in steering systems has been comparatively gentle. The first hydraulically assisted power steering systems were fitted to North American passenger cars in 1951, but even until the mid-1990s, it was not uncommon for compact and economy cars in the European market to be sold without power assistance.

Then in the late 1990s, Japanese carmakers and their suppliers, including Koyo and NSK, began to introduce power steering that uses electrical energy to assist the driver, rather than hydraulic power.

Steering systems that actively assist in the event of an emergency are now available on a small range of high-end cars, but the introduction of steer-by-wire in any mainstream application is still a far-off goal.

Electric power assisted steering (EPS)

The growth in installation rates of electric power steering in European and Japanese markets was rapid from 1997, as the technology offers several benefits over hydraulic systems where lower medium and smaller cars are concerned.

In Europe, small cars (city, compact, lower-medium) make up around 65% of the total new car market by volume, or in the region of 9.5 million cars per year. Japan’s domestic market is dominated to an even greater proportion by smaller cars. Since 1998 - 1999, at least 85% of cars in these segments have been fitted with EPS. By 2010, every car in these segments will have electrically assisted steering systems.

EPS uses an electric motor attached to the steering gear, which draws power from the battery in place of a reservoir, pump and belts drawing power directly from the engine.

EPS only draws power when assistance is needed, so can reduce the parasitic fuel drain of the steering system by around 75% compared to hydraulic power. That results in a real-world fuel saving of around 0.2l/100km in a typical European small car.

And the elimination of bulky hydraulic hardware means EPS is lighter, smaller and simpler than hydraulic systems. Suppliers also generally deliver pre-tested and pre-assembled steering sets, saving time and cost on the final assembly line.

There are three main types of EPS

There are three main types of EPS, all relating to the location of the electric motor – column, pinion, or rack mounted. Pinion and rack mounted systems are more powerful, but rack mounted EPS is very compact and is commonly fitted to city and compact cars.
ORDER FORM
Fax back to: **+44(0)20 7434 1545**

1. **Please complete your order details**

<table>
<thead>
<tr>
<th>Report</th>
<th>Quantity (PDF*)</th>
<th>Quantity (Print**)</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>The global chassis sector report: An analysis of the braking, steering & suspension markets 2006 edition</td>
<td></td>
<td></td>
<td>£495**</td>
<td></td>
</tr>
</tbody>
</table>

Postage is included

* Immediate electronic delivery

** Please add £25 for reports supplied in print

Customers in the UK add 17.5% VAT for PDF purchases

Total to pay

2. **How would you like to pay?**

- [] I enclose a cheque for £
- [] Please charge £ to my
 - [] MasterCard
 - [] Visa
 - [] Switch
 - [] AmEx

3. **Please complete your personal details**

(Please attach your business card or complete the following in capitals)

<table>
<thead>
<tr>
<th>Name (Mr/Mrs/Ms/Dr)</th>
<th>Job title</th>
<th>Company name</th>
<th>Address</th>
<th>City</th>
<th>Zip/postcode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Nature of business</th>
<th>Tel</th>
<th>Fax</th>
<th>E-mail*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(required for electronic delivery of reports)</td>
</tr>
</tbody>
</table>

The above prices do not include VAT. Customers in EU member countries may be liable to pay VAT if their Registration Number is not supplied. Please enter your EU Registration Number (VAT/TVA/BTW/MOMS/MWST/IVA/FPA) below:

4. **Please send your order to**

ABOUT Publishing Group Limited,
21 Noel Street, London, W1F 8GP, United Kingdom
T: +44(0)20 7434 1269 F: +44(0)20 7434 1545
e-mail: sales@aboutpublishing-auto.com www.aboutpublishing-auto.com
